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Two-fluid flow in sedimentary rock:
simulation, transport and complexity
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The macroscopic properties and structure of the flow of two immiscible fluids through
Fontainebleau sandstone are studied by numerical simulation. The pore space ge-
ometry was obtained by X-ray microtomography (Kinney et al. 1993) and the nu-
merical simulations were performed by a new lattice-gas cellular automaton method
(Olson & Rothman 1995). We first validate the numerical method by showing that
the drag on a cubic array of spherical drops matches theoretical predictions. As a
further test, we present a comparison between computed relative permeability and
experimental measurements on the same rock. We then present a study of fluid–fluid
coupling; we find that it is significant, and that it appears to be reciprocal: the flux of
one fluid due to forcing on the other is the same, regardless of which fluid is forced.
Lastly, we characterize the complexity and organization of the flow by means of a
statistical parameter, the skewness of the distribution of local velocities.

1. Introduction
The flow of two-phase mixtures in porous rock is a subject of considerable economic

and scientific importance. For example, an oil reservoir typically contains at least two
and usually three distinct fluid phases, oil, brine, and gas, and the transport of these
species through the rock is of obvious interest. Of equal importance is two-phase flow
in aquifers, where the economically important species is fresh water and any other
phase which is present is likely to be a harmful pollutant. In the broader context of
porous media, industrial processes may require two-phase mixtures to flow through
heterogeneous catalysts, mixing drums, boilers or condensers. In yet broader terms,
blood is a multiphase fluid mixture that percolates through a complex porous medium
called flesh and bone. A better understanding of two-phase flow through sedimentary
rock is thus of considerable practical value in its own right, and as an example of the
larger class of multiphase flows through porous media.

Although flow through porous rock has been studied experimentally at least since
the nineteenth century (Darcy 1956), numerical simulations can provide important
information that is not easily accessible to experiments (van Genabeek & Rothman
1996). For example, one can measure the average flux through a sample of rock in the
laboratory, but it is difficult to measure the local velocity in some pore in the rock. In
a calculation, on the other hand, the velocity at every point is readily accessible. Such
detailed information, appropriately analysed, may provide insight which can be tested
in experiments. Simulation also affords more control than can be had in experiment:
for example, in the present research it is straightforward to apply a body force to one
fluid in a mixture and thus to probe the phenomenon of fluid–fluid coupling in porous
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Figure 1. The pore space in Fontainebleau sandstone as determined by X-ray microtomography
(Kinney et al. 1993). The data are discretized to cubes of side length 7.5µm; this figure shows the
surface of the void space in a cube 0.78 mm on a side.

rock, while the same study in the laboratory requires careful and elaborate prepa-
rations (Zarcone & Lenormand 1994; Zarcone 1994; Avram & Payatakes 1995). We
thus seek a means to compute two-phase flow in a porous medium.

The problem would appear to be simple: we know the microscopic (pore scale)
motion will be governed by Navier–Stokes equations with pressure-jump boundary
conditions at the interfaces. But the pore space in sedimentary rock is enormously
complex, as shown in figure 1. Not only is the geometry complicated, but for two-
phase flows the interfaces are likely to break and merge, and certain to move, all of
which would make a conventional numerical solution difficult. We therefore developed
a new numerical method, a lattice gas cellular automaton (Olson & Rothman 1995;
Frisch, Hasslacher & Pomeau 1986; Rothman & Zaleski 1994, 1997), for this work.
The principle advantage of a lattice gas for this work is that interfaces, complete
with pressure-jump boundary conditions, emerge from simple, microscopic rules that
are applied uniformly throughout the simulation volume. This is much simpler than
having to follow the interfaces and match boundary conditions explicitly.
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The new method has been characterized in some detail, including demonstrations
that phase separation is approximately isotropic (Appert et al. 1995) and that sheared
interfaces transfer momentum correctly (Olson & Rothman 1995). In this paper, we
present a further validation by computing the drag on fluid spheres and showing
that our results are in good agreement with theory. We also present a preliminary
comparison of relative permeability computed with the method to that measured on
the same rock in the laboratory, and find good agreement. We then measure the
macroscopic transport properties of the flow, the relative permeability of each species
and the coupling between the fluids under a variety of conditions, and examine the
details of the flow field, noting and characterizing its structure.

In studies of two-phase flow through porous rock, it is often assumed that the
fluids do not couple to one another, that is, that forcing one fluid does not cause
the other fluid to move. This assumption has been addressed by experiments (Kalay-
djian 1994; Mannseth 1991; Bentsen & Manai 1993; Zarcone & Lenormand 1994;
Zarcone 1994; Bentsen 1994; Avram & Payatakes 1995), theory (de Gennes 1983,
Bacri, Chaouche & Salin 1990; S. Pride & E. Flekkøy 1996, personal communication)
and simulation (Gunstensen & Rothman 1993), but remains controversial. In this
paper, we will test the hypothesis that two-phase flow can be described by a simple
extension of Darcy’s law,(
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where ui is the flux of species i, the subscripts w and n corresponding to wetting and
non-wetting fluid, respectively, Fi is the force on each species, k is the permeability
of the medium, and the transport coefficients κij are the relative permeabilities
(diagonal terms) and coupling coefficients (off-diagonal terms). In general these κij
will depend on the viscosity of each fluid and the composition of the mixture. This
is simply the most general linear force–flux relation, and it would not be surprising
to find variation from it; but it serves as a basis for discussion. Earlier simulations
(Gunstensen & Rothman 1993) in an artificial medium found significant values for
the coupling coefficients, a forcing threshold below which no flow occurred, and some
nonlinear dependence of the fluxes on the forcing. In the present work, we will again
find significant coupling and a threshold forcing, but we do not study the nonlinear
response above this threshold.

The present work is the first attempt either to measure or compute both coupling
coefficients κwn and κnw in a real rock geometry. In addition, of those studies
which have measured fluid–fluid coupling, only Bentsen (1994) makes any attempt
to measure both coupling coefficients. A summary of the published research on
fluid–fluid coupling in porous media is given in table 1. In our work, we computed
both coefficients independently and found them to be equal within the uncertainty of
the calculation.

Because transport properties are a macroscopic, average description of the flow,
we would like to ask why they take the values they do. The answer must lie in the
detailed velocity field in the rock pore space, but how can we characterize this velocity
field in a comprehensible way? If we construe the velocity field as a distribution of
local velocities, we can compute statistical properties – moments – of this distribution.
We show that the third moment or skewness of the velocity field quantifies the degree
of organization of the flow.

In the sections to follow, we first briefly introduce the lattice gas method and
add to the already extensive literature of validations of such methods (for example,
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κ R? Medium and fluids k (µm2) m Φ pCa Ref.

0.15 No Sand pack, water 20 30 0.35 7 Bentsen & Manai 1993
and oil

<0.01 A Vosges sandstone, 0.12 11 0.233 8–7 Kalaydjian 1990
water and oil

<0.003 N/A Sand pack, water 34 1.5 0.36 7 Zarcone & Lenormand 1994
and mercury

0 (< 10−4) N/A Sand pack, water 34 1.7 0.36 7–6 Zarcone 1994
and dodecane

<0.02 A Simulated tube N/A 1 N/A N/A Goode & Ramakrishnan 1993
network

<0.1 Yes ‘Penetrable sphere’ large 1 0.65 0 Gunstensen & Rothman 1993
medium

0.015 Yes Sim. Fontainebleau 1.1 1 0.15 5 ?
sandstone

Table 1. Coupling coefficients in two-fluid flow through porous media. Experimental measures (top
of table) and simulations (bottom) have been performed to deduce the importance of fluid–fluid
coupling in two-fluid flow through porous media. The coupling coefficient κ (corresponding to
the off-diagonal terms in equation (1.1) is dimensionless. The column labelled “R?” indicates
the reciprocity of coupling terms, as found in each study; some researchers assumed the coupling
coefficients would be equal, so these studies are labelled ‘A.’ k is the permeability of the medium,
m is the ratio of dynamic viscosities (µn/µw) (the mobility coefficient) and Φ is the porosity of the
medium. pCa is the negative, base 10 logarithm of the capillary number (analogous to pH), with
the capillary number defined as µwu/γ, where γ is the surface tension between the two fluids and u
is the volume flux of the forced fluid. The row marked with ‘?’ refers to this work. ‘N/A’ means
‘not applicable’ or ‘not available.’

Rothman & Zaleski 1994; Olson & Rothman 1995; Appert et al. 1995) by showing
that it correctly computes the drag on fluid spheres. We then validate the computa-
tion of flow through a digitized pore space by simulating the non-wetting invasion
experiment by which relative permeability is measured in the laboratory and com-
paring the computed relative permeability to laboratory measurements on the same
rock. We will find that a modified simulation is more effective than direct simulation
for computing transport properties at the limited spatial resolution practical with
current computers. We then compute macroscopic transport properties for a range of
saturations and of forcings, by which means we can compute directly the fluid–fluid
coupling. We then examine the flow field in detail, and show pictorially that the flow
of pure fluid is more highly organized than the flow of a mixture, and that the flow
of a mixture when the non-wetting fluid is forced is more organized than the flow
of a mixture when the wetting fluid is forced. Inspired by the extensive literature on
statistical measures of turbulence (see, for example, Tennekes & Lumley 1972), we
compute the moments of the velocity fields, and see that the skewness indicates the
degree of organization of the flow. Finally, we state our conclusions and indicate
directions for future work, both with the computer and in the laboratory.

2. Simulated flow through Fontainebleau sandstone
Recent advances in X-ray microtomography have made it possible to image the

three-dimensional pore space in sandstone at high resolution over macroscopic vol-
umes. The complex geometry of the pore space can now be used to compute quantities
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which could formerly be determined only by experiments. We have sought to simu-
late the flow of two-fluid mixtures through this pore space by means of a lattice-gas
cellular automaton. Since the model used for this research (Olson & Rothman 1995)
and a review (Rothman & Zaleski 1994) of lattice gases have been recently published
elsewhere, we give only a brief outline here.

A lattice gas consists of particles (represented as bits in a computer memory) to
which are assigned mass and momentum, and which are restricted to exist only at
the nodes of a regular lattice in space and only at regular intervals in time. Particles
move from node to node in the directions of their momenta; when particles meet
at a node, they collide, conserving the total momentum and mass at the node. If a
lattice with appropriate symmetry is chosen, the coarse-grained average density ρ and
momentum ρu satisfy equations like the Navier–Stokes equations:

∇ · u = 0 and ρ
∂u

∂t
+ ρ g(ρ) u · ∇u = −∇P + η∇2u, (2.1)

where P is the pressure and η the dynamic viscosity. Ideally, the factor g(ρ) should
be unity, but for the present research fluid velocities will be small so it is of little
relevance; in fact, we will choose a density so that g(ρ) is identically zero and we
model pure Stokes flow.

2.1. The two-fluid model

Each particle is labelled with a colour, either red or blue. The particles carry their
colour as they move about the lattice, and the collisions preserve the number of
particles of each colour at each site, as well as the total momentum. Since the
collision scrambles particle directions, it is not clear how to assign a colour to each
particle after a collision. We must thus choose a rule for recolouring the particles,
but we are free to choose any rule that generates interesting dynamics and preserves
the numbers of each species.

We compute a colour field φ which is the difference between the numbers of red
and blue particles at each node,

φ(x, t) = nred(x, t)− nblue(x, t). (2.2)

We then compute the discrete gradient of this field,

f(x, t) =
∑
i

ciφ(x+ ci, t) (2.3)

where ci is the vector which points to the ith neighbouring node. We then use this
gradient both to guide the recolouring and to generate surface tension in a plane
normal to the gradient. Surface tension is generated by reorienting particles at each
node so that as many as possible align with the gradient, without changing the total
momentum at the node. This is accomplished by reorienting oppositely directed pairs
of particles, or dumbbells, which have no net momentum and so can be rearranged
at will. After reorienting the dumbbells, the recolouring rule assigns red particles
to directions mostly parallel to the gradient and blue particles antiparallel, so that
in the following propagation step the red particles move toward nodes with higher
concentrations of red, and blue towards higher concentration of blue. This rule
causes a mixture of species to separate, and to remain separate. The model thus has
fluid dynamic behaviour from the momentum- and particle-conserving collision rules
as well as surface tension from the dumbbell rules and phase separation from the
recolouring.
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The surface tension has been computed from first principles in related two-
dimensional two-fluid models (Adler, d’Humières & Rothman 1994), but no such
theory has been carried out for the newer three-dimensional model yet; instead, the ef-
fective surface tension has been measured from simulations (Olson & Rothman 1995),
and the non-equilibrium growth due to phase separation has been investigated in detail
(Appert et al. 1995). In addition, the influence of interfaces on momentum transport
was found to match theoretical predictions qualitatively (Olson & Rothman 1995)
in the complex flow of a phase-separating mixture undergoing shear flow. We will
show below that the model correctly computes the drag on spherical drops, which
demonstrates that momentum is correctly transferred through the interface in all
directions.

2.2. Flow through digital rock

Once we have shown that the lattice gas has sensible fluid and interfacial behaviour
on its own, we simulate flow through the complex digitized pore space of the
sandstone. A recently developed tomographic technique (Kinney et al. 1993) resolves
rock structure in three dimensions at a scale of 7.5 µm over a parallelepiped roughly
2 mm on a side, containing nearly 19.5 million volume cells, or voxels. A cubic
subset of these data, 64 voxels on a side, was used for most of the simulations
reported here. This volume was large enough to contain several grains and a few
channels, but small enough for practical calculations on workstations. Each voxel
was mapped to a single node in the lattice gas, so the lattice spacing can be identified
with the voxel scale, 7.5 µm. Solid voxels became wall sites, and empty voxels became
void sites. The pore space was arranged to be periodic in the vertical direction by
doubling the size of the simulation in the vertical direction and filling the upper
half of the simulation volume with a vertically reflected copy of the original pore
volume; the pore space was also jacketed by vertical walls. This periodic medium
was employed in order to avoid end effects. The forcing is a body force, created
by adding momentum to randomly selected sites in the lattice at each time step
(Olson 1995); when one species is forced, the momentum is added to sites which
contain only that species. No-slip conditions at the walls are simulated by a simple
bounce-back rule: the collision rule at wall sites does not conserve momentum, but
rather simply replaces each particle with a particle of the same colour travelling
in the opposite direction. The effect of this is to create a layer between the wall
node and its void neighbors where the velocity is zero on average. In fact, the
proper way to model solid walls is a question of some subtlety (see, for example,
Cornubert, d’Humières & Levermore 1991; Skordos 1993; Ginsbourg & Adler 1994;
Ginsbourg & d’Humières 1996), but this simple rule suffices for the present work. In
addition to the no-slip rule at the walls, the colour field φ used in equation (2.3)
is fixed at a particular value for the entire simulation. We can then use the colour
field at wall sites to compute the gradient and apply the surface tension rule at void
sites adjacent to the walls; in this way, the fluid–wall interfaces also have a surface
tension. If the wall colour field were set to zero, then both species would have the
same surface tension at the wall, and neither species would be preferentially attracted
to the wall. If the colour field is negative, then the blue fluid has a weaker surface
tension on the wall, and the red fluid stronger; in this case, the red fluid avoids the
wall and is called non-wetting, while the blue fluid spreads along the wall, and is
called wetting.

The wetting layer may become very thin in flow through a porous medium,
particularly when the concentration of the wetting species is low. Precisely this
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situation arises in laboratory measurements of relative permeability, so we would
like to be able to simulate it. However, because we model fluids by lattice-gas
particles, at some low concentration the wetting layer must necessarily break up into
disconnected particles adsorbed on the wall. It turns out that we can make even this
case physically relevant by judicious selection of our model parameters. In the next
section, we compare our model with both theoretical and experimental results, and
briefly describe the method we use to select our model parameters.

3. Validation
We have performed a variety of simulations to demonstrate that the lattice

gas is a valid model of two-fluid flows, some of which are reported elsewhere
(Olson & Rothman 1995; Appert et al. 1995); below, we add to this literature a
demonstration that the lattice-gas method correctly computes the drag on fluid
spheres. After that, we compare the calculated transport properties of the simulated
fluid through the porous rock geometry with experimental measurements, and show
that the ‘digital permeameter’ developed here can compute experimental quantities
with some accuracy. Thus, in this section we compare the new lattice gas simulation
method with both theory and experiment.

3.1. Drag on an array of spheres

A fluid sphere moving through another fluid has complex interior and exterior
motions, controlled by the transfer of momentum through and along the fluid–fluid
interface. Computing the drag on a fluid drop is thus a sensitive test of the interface
dynamics.

When a spherical drop falls through another fluid under the influence of gravity g,
and if both fluids have the same viscosity µ, then the terminal velocity of the sphere
– the speed at which the drag force balances the buoyancy force – is given by Stokes’
law for liquid drops (Lamb 1932)

UStokes =
4

15

g∆ρ

µ
a2, (3.1)

where ∆ρ is the density difference between the two fluids and a is the radius of the
drop. This equation is valid for a single, spherical drop falling slowly through an
infinite extent of a second fluid, or more practically, in a container much larger than
the drop. In order to test this theory, we would need to simulate a small drop –
subject to large Brownian fluctuations, so requiring a great deal of averaging – in a
large volume of fluid, which would require a long time to come to a steady state. This
would be a costly calculation. Instead, we could place the sphere in a small volume
of fluid with periodic boundary conditions, and thus simulate an infinite cubic array
of identical spheres. Sangani (1987) deduced the drag per sphere for such a system.
According to this theory, the actual terminal velocity of each sphere will be the Stokes
velocity given in equation (3.1) multiplied by a correction factor ζ which depends on
the volume fraction Φ occupied by the moving spheres, and which must be computed
numerically:

Uactual = ζ(Φ)UStokes. (3.2)

3.1.1. Simulations

We fill a cubic lattice with blue particles, and label a spherical region in the centre
of the lattice red. Meanwhile we apply body forces to both fluids. We take care to
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Sangani Volumetric Hydrodynamic
Φ ζ(Φ) radius radius

9.77% 0.370

1.78
3.72
5.82
7.72

1.17
3.36
5.32
7.10

15.5% 0.282

1.78
3.74
5.81
7.73
9.76

14.77

1.26
3.14
5.49
7.34
9.09

12.84

26.8% 0.172

7.76
9.78

11.75
13.81
15.78

7.93
9.98

11.83
13.31
14.55

Table 2. Summary of results for Stokes drag on a cubic array of spheres. The volume fraction Φ is
the fraction of the particles which are red, which is the parameter needed to compute the Sangani
ζ factor for equation (3.2). The values of ζ given in this table were read off Graph 1 in Sangani
(1987). The volumetric radius is the radius of a sphere that would contain all the red particles,
taking into account the fact that surface tension compresses the sphere. The hydrodynamic radius is
the radius of a sphere of fluid that would have exactly the observed terminal velocity if the Sangani
theory were followed exactly. All radii are in lattice units. Drops cannot get smaller than two lattice
units in radius, and the drop radius must be a few lattice units smaller than half the box size to
avoid the formation of cylinders instead of drops (see text). Drops could not be made arbitrarily
large because large drops move faster, and both the theory and the model are valid only for slowly
moving fluids.

add momentum to both species in such a way as to keep the total momentum of the
system always zero: i.e. we may force the red sphere downward by adding a certain
amount of momentum to it at each time step; then we will add the same amount of
upward momentum to the blue fluid at each time step.

With this forcing scheme in place, we measure the velocity of the sphere, taken to
be the average time derivative of the location of the centre of mass of all the red
particles. After a few to a few thousand time steps (depending on the size of the
suspended sphere) the velocity comes to a steady state, and an average velocity is
computed over several thousand time steps. In addition, the experiment is repeated
for several macroscopically identical but microscopically distinct initial states, and
the average velocities are then averaged over this ensemble of states and histories.

The hydrodynamically meaningful velocity U is the average velocity of the back-
ground fluid in the frame fixed to the drop, but the simulation frame is not fixed
to the drop; rather, it is the frame in which the total momentum is always zero.
Denoting quantities in the simulation frame with tildes and quantities in the drop
frame without,

p̃drop + p̃background = 0, (3.3)

where p̃drop is the total vertical momentum of all the particles in the drop, i.e. all the
red particles, and p̃background is the total vertical momentum of all the other (i.e. blue)
particles. Denoting the total mass of the drop as mdrop, the average velocity of the



Two-fluid flow in sedimentary rock 351

drop in the simulation frame will be

〈ũdrop〉 = p̃drop/mdrop. (3.4)

Then velocity in the drop frame, u(x), is simply the difference between velocity in the
simulation frame ũ(x) and the average velocity of the drop in the simulation frame:

u(x) = ũ(x)− 〈ũdrop〉 . (3.5)

The average velocity of the background fluid relative to the drop, U, is easily
computed by considering the volume flux through the simulation volume. Taking the
forcing to be in the vertical (z) direction, the total flux through every horizontal plane
should be the same since the fluid is incompressible; hence, we can define

U =

∫ L

0

∫ L

0

u(x) dx dy

L2
(3.6)

which will be the same regardless of z. In fact, let us integrate over the vertical
direction as well:

U =

∫ L

0

∫ L

0

∫ L

0

u(x) dx dy dz

L3
. (3.7)

Substituting for u(x) from equation (3.5),

U =

∫ L

0

∫ L

0

∫ L

0

ũ(x) dx dy dz

L3
− 〈ũdrop〉 . (3.8)

If we multiplied the remaining integral in equation (3.8) by the density ρ, we would
recognize it as the total momentum of the system in the simulation frame; but this is
zero because of the forcing used in the simulation. Therefore,

U = −〈ũdrop〉 . (3.9)

From the hydrodynamic velocity U computed according to equation (3.9), the
known Sangani ζ(Φ) correction and equations (3.1) and (3.2), we can deduce the
radius of a drop that should have that velocity. This is the hydrodynamic radius
reported in table 2. In addition, we know the actual number of red and blue particles
and the average density of particles in each phase (the pressure, and hence the density
inside the drop is slightly higher due to the surface tension); with these data, we can
calculate the radius of a sphere which would contain all the red particles. This is the
volumetric radius reported in table 2.

3.1.2. Comparison with theory

Table 2 and figure 2 compare the volumetric and hydrodynamic radii. The theory
is supposed to be valid up to the maximum possible volume fraction of 52.36%, at
which value the spheres touch one another. Such a high volume fraction could not be
simulated because, if the drop were to touch its image due to a fluctuation, it would
merge with the image resulting in an array of cylinders instead of spheres. Simulations
were performed at volume fractions of 9.7%, 15% and 27%, and the hydrodynamic
radius is in good agreement with the volumetric radius in each case. The volumetric
radius is larger than the hydrodynamic radius in almost every case, and the difference
is on the order of half a lattice unit in almost every case. Such small discrepancies
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Figure 2. Comparing the hydrodynamic and volumetric radii of fluid spheres. If a point lay on the
dashed line, the hydrodynamic and volumetric radii would be identical. The agreement is good for
all cases. The hydrodynamic radius is deduced from the theory of Sangani (1987), and there are
no free parameters in this fit. The radii are in lattice units, and the error bars are smaller than the
symbols.

between the hydrodynamic and volumetric radii are not inconsistent with the Sangani
theory: just as the bounce-back rule generates an effective no-slip surface at some
small but hard-to-quantify distance from the wall, the surface tension rules generate
an effective interface at a location that is hard to quantify precisely, but which is close
to the apparent interface between species. This drag simulation can be taken as a
measurement of the location of the fluid–fluid interface. The discrepancy is larger for
the largest two drops, corresponding to drops which move more slowly than would
be expected. These correspond to the largest simulations, which take much longer to
come to steady state; perhaps the simulations were stopped before the steady state
had been reached in these cases.

Ladd (1994) measured the hydrodynamic radii of solid spheres in a cubic array using
a related lattice-Boltzmann technique, and found comparable results. He reported
good agreement between theory (Hasimoto 1959) and his simulations for volume
fractions around 10%, and further found good agreement between his simulations
and more conventional numerical solutions of the Stokes equations for volume
fractions up to the maximum possible. S. Zaleski & D. Gueyffier (1996, personal
communication) have found good agreement between their calculations of drag on
fluid spheres and the Sangani theory over a similar range of parameters.

3.1.3. Parameter selection

Having established that fluid–fluid interfaces behave correctly in the lattice gas
model, we now choose parameters so as to compute useful results for very thin wetting
layers. Simulations of concentric two-phase flow through a circular cylindrical pipe
using related lattice-Boltzmann methods (Gunstensen & Rothman 1993) have been
shown to reproduce theoretical predictions (Bacri et al. 1990) accurately when the
wetting layer is at least one node thick. We verified that our new discrete model
yields the same results. The present model can be extended to wetting layers less than
one node thick by placing in the medium fewer wetting particles than are needed to
cover the wall; then the random motion of the wetting particles along the surface
simulates on average a continuous, thin wetting layer. In order to obtain correct
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Porosity(%) Vp/S (µm) k (µm)2 κ0
nn Sr,w

Measured 15.2 9.6 1.1 0.92 0.03

Calculated 16.8 10.4
1.0 (FD)
1.2 (LB)

0.84 (I)
0.90 (II)

0.53
(0.03)

Table 3. Comparison of experiment with calculation. The porosity and the ratio of pore volume
to surface area, Vp/S are geometric parameters and are well preserved by the digitization. The
third column is the permeability of the medium, as computed by a finite difference (FD) and by a
lattice-Boltzmann (LB) method. The last two columns are the relative permeability of the medium
to non-wetting fluid κ0

nn at the residual wetting saturation Sr,w when the wetting fluid is displaced by
non-wetting fluid. A direct simulation of the laboratory experiment (I) leaves 53% wetting fluid in
the medium and computes a relative permeability of 0.84, while a simulation (II) with the correct
residual saturation imposed yielded a better estimate (0.90) of the relative permeability.

results for such a thin layer, it is necessary to set the colour field φ at the walls to
a moderate value (±3), and to reduce the surface tension by applying the surface
tension rule only some of the time. For the simulations reported here, we applied
the surface tension rule 40% of the time, and the surface tension was measured at
1.38±0.14(particle mass)(time step)−2. We then set about comparing the experimental
relative permeability of the rock with that computed by our simulations.

3.2. Comparison with experiment

The porosity and specific surface area (the ratio of pore volume to surface area) can be
determined both from the digitized rock geometry and from laboratory experiments.
We find that the calculation and the measurement give the same result, which gives us
some confidence that the geometry of the rock has been adequately resolved by the
tomography. This comparison has been published elsewhere (Auzerais et al. 1996).
In addition, the permeability to single-phase flow in the rock has been computed by
lattice-Boltzmann simulations and by a conventional finite-difference method, as well
as measured in the laboratory. All three methods give consistent results, as reported
also in Auzerias et al. (1996). In this section, we present in detail comparisons
between simulations and measurements of two-fluid flow in porous rock, which were
described briefly in Auzerias et al. (1996). Table 3 summarizes all these comparisons.

When non-wetting fluid displaces wetting fluid in a real rock, the non-wetting fluid
first fills the widest channels and then only gradually finds its way into narrower
pores, as the wetting fluid in these pores is slowly drained out of the rock. Eventually
the wetting fluid is reduced to a thin film which does not flow, and the pore space
is almost entirely filled with the non-wetting fluid. Since the non-wetting fluid is no
longer flowing, its concentration cannot decrease further and the composition of the
fluid in the pore space is at a steady state.

Precisely the same sequence can take place in a direct simulation of the laboratory
experiment, as shown in figure 3. We will refer to such direct simulations of displace-
ment experiments as simulations of type I. Because the lattice has a resolution of
7.5 µm, the thinnest wetting layer that can arise is macroscopically thick: in fact, the
set of all void nodes which neighbour solid nodes contains about half of all the void
nodes. This is part of the reason that the endpoint saturation – the concentration
of wetting fluid remaining in the ‘thin film’ at steady state – is 53% in the simula-
tion, while in the real rock, it is only 3%. It is hardly surprising that such a large
discrepancy in the saturation should result in a discrepancy in the computed relative
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permeability; it is nonetheless reassuring that the computed relative permeability,
0.84, is not that far from the experimental value of 0.92.

Rather than trying to duplicate the experimental flow, we can try to compute the
relative permeability in a more convenient type of simulation, which we will call type
II. We fill the pore space with a mixture containing some concentration of wetting
fluid and force the mixture while keeping the vertical boundaries periodic so that the
overall composition does not change. Now if there are only a few wetting particles,
they cannot form a continuous layer of wetting fluid, but they can diffuse over the
walls and on average create the effect of a thin wetting layer, as in the cylindrical pipe
mentioned earlier. When we filled the void space with 3% wetting fluid to simulate
the experimentally observed endpoint saturation, the computed relative permeability
in the simulation was 0.90, in good agreement with the experiment. Thus, although
the limited resolution of the lattice prevents us from computing some parameters
accurately, others can be determined: specifically, those which can be averaged over
a macroscopic volume, like the flux of each species at some particular concentration.
It should be emphasized that the limited resolution is not an intrinsic problem with
the numerical method; rather, it is a consequence of the computing technology which
is currently available.

Both simulations used a uniform body forcing on the fluid to simulate the pressure
forcing used in the experiments. It is not clear to what extent this is a valid
substitution; body forcing was chosen for reasons of numerical convenience, but it is
to be expected that the distribution of pressure in the medium will be different under
body or pressure forcing. This remains a topic for further study. In the following
sections, pressure forcing would obscure the coupling between fluids, while body
forcing does not; indeed, experimentalists have proposed using body forcing (either
buoyant, Kalaydjian 1990, or electromagnetic, Zarcone 1994) for this purpose.

4. Transport properties in two-fluid flow
While a ‘simulation permeameter’ (see also Soll et al. 1994; Buckles et al. 1994)

would no doubt see valuable use, it is both simpler and of greater scientific interest
to take the tomography data as representative of the kind of pore spaces found
in rock, and to ask what are the generic properties of flow through such complex
and confined geometries. While it is clear from experiments that flow through
porous rock is qualitatively different from flow through a medium such as sand
or a glass bead pack (A. Thompson, personal communication; Bear 1972; Schei-
degger 1974), it is not clear what are the geometric properties of the rock which
make it different. A number of techniques have been developed to characterize the
geometry of porous rock, including both statistical measures (Yao et al. 1993) and
topological properties (Lindquist et al. 1996; Spanne et al. 1994). It is possible to
generate pore geometries which have the same properties as were measured from the
original rock, but which are nonetheless distinct from the authentic rock; one may
simulate flow through these synthetic geometries as well as through the original geom-
etry (Adler, Jacquin & Quiblier 1990; Sallès, Thovert & Adler 1993, 1994). Research
along these lines may elucidate the geometric properties of rock that control the flow.
Here, we have chosen to use only the authentic pore geometry for our simulations.

In this section, we present the results of relative permeability measurements, and
show that the fluid–fluid coupling in equation (1.1) is not only significant, but also
that the coupling coefficients κwn and κnw are equal. This is the first time that both
coupling coefficients have been independently measured for a natural rock geometry.
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We first survey the variation of fluid response with concentration and with forcing,
and then consider the fluid–fluid coupling in detail.

4.1. Simulation details

All the simulations reported in this section and the next were simulations of type II
as described above. Two kinds of fluid flux are reported, total flux and local flux.
The first is a sum of the momenta of all the particles throughout the lattice at some
moment in time, and it may be calculated for each species of particle separately:

Total Fluxi(t) =
∑
x

pi(x, t) (4.1)

where the subscript i could refer to either species or both, and pi(x) is the momentum
of particles of species i at location x. The local flux is the momentum at a particular
node in the lattice, averaged over many (Ω) time steps:

Local Flux(x) =
1

Ω

(
Ω∑
t

p(x, t)

)
. (4.2)

Note that the local flux is not defined for each species, but only for the mixture. We
found that a local flux of particles of a particular species was strongly skewed at
any interface that does not move, so much so that the quantity was not useful. It
is, however, possible to define a local, time-averaged concentration of each species in
analogy to equation (4.2).

4.2. Concentration effect

We calculated the total flux of each species through the medium when either species
was forced, for a range of concentrations. For this study, each simulation was
performed with the same amount of forcing per particle, 2.5×10−4 units of momentum
per particle of the forced species per time step. The total flux was then divided by
the total flux which is observed in the same medium when a single fluid is forced
at this rate; this is the normalized momentum which is plotted in figure 4. We take
care not to call this normalized momentum the relative permeability, because this
calculation neglects the capillary threshold which will be measured in the next section,
but the qualitative features of the plot reproduce the kinds of features observed in real
experiments: the relative permeability of each species decreases with its concentration,
and the viscous coupling terms are small. In fact, the coupling is not distinguishable
from zero except at concentration 50%, though this too depends on the forcing.

4.3. Capillary threshold

For small forcings, non-wetting fluid may be excluded from the smallest pores in the
medium. In the simulations performed here, that means that both species will form
separate phases locally throughout the medium. Initially, drops of the non-wetting
fluid will travel through the medium, but after a short time, the non-wetting fluid
gathers into larger blobs that can no longer pass through any available opening.
At this point the net flux of the non-wetting fluid will vanish; and under some
conditions the non-wetting blobs may clog the medium sufficiently that the wetting
fluid is also unable to flow. But if the forcing is strong enough, these blobs may
be squeezed through the narrow channels, resulting in a steady flow. So when the
forcing is below the capillary threshold, no flow occurs; and above this threshold,
the flux increases with increasing force. Earlier simulations using artificial media
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Figure 4. The normalized momentum is the total vertical momentum divided by the total vertical
momentum of pure fluid at the same forcing in the same medium; it is roughly the same as the
relative permeability. Error bars are about the size of the symbols. Each datum reported here
represents an average of two to five simulations. Note that the viscous coupling is largest near
concentration 0.5.

(Gunstensen & Rothman 1993) found evidence for nonlinear dependence of flux on
force in this domain, but the present simulations cannot distinguish between linear
and nonlinear dependence. We have assumed a simple linear dependence above the
capillary threshold in what follows.

We take as our example the case with concentration 50%. When the non-wetting
fluid is forced, it does not move at all until the force reaches 2.5×10−4 units of
momentum per particle per time step, and at that forcing, some simulations show a
significant steady-state non-wetting flux, while others show no detectable flux. For
stronger forcings, the flux increases rapidly. On the other hand, when wetting fluid
is forced, some wetting flux is observed even for small forcing, but the flux increases
more slowly with increasing force. These results are shown in figure 5. This is in
qualitative agreement with experimental measurements (for example, Bear 1972, pp.
449–452, 459–466). The different slopes can be understood in broad terms as a
consequence of lubrication: when the wetting fluid moves, it has to creep along the
walls, while the non-wetting fluid is lubricated by the wetting fluid.

Since the wetting fluid moves at all forcings and its response is linear with forcing,
the ‘normalized momentum’ plotted in figure 4 for the wetting fluid can be interpreted
directly as the relative permeability. In the non-wetting case however, one must carry
out a series of simulations for each concentration, because both the capillary threshold
as well as the slope of the linear response are likely to depend on the concentration.
We expect that the actual relative permeabilities for the non-wetting fluid at each
concentration will not be smaller than the normalized momenta plotted in figure 4.

4.4. Fluid–fluid coupling

The total flux varied from one simulation to another at the same forcing because
the interfaces between species can take different locations in each simulation. The
variation was not large compared to the flux of the forced species, but the variation
was large compared to the much smaller fluxes of the unforced species in each
simulation. We therefore found it necessary to perform many simulations – 87 in all –
to be certain that the coupling coefficients κnw and κwn had been accurately determined
(Olson 1995). The average fluxes and the best-fit lines through the data are shown
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Figure 5. Each species can be forced independently in the simulations, and both species respond
to forcing of either species. This plot shows the flux of each species when it is forced at 50%
concentration. Each data point represents an average over five to fifteen simulations, and each
simulation, an average over 10 000 time steps. Error bars are about the size of the symbols. The
‘normalized flux’ is the total flux of the species (defined in equation (4.1)) divided by the total flux of
a pure fluid at a forcing of 0.0004 in lattice units (i.e. (particle mass)(lattice spacing)/(time step)2).
The ‘normalized force’ is the forcing per particle per time step divided by 0.0004; the forcing used in
figure 4 corresponds to 0.625 on this scale. The lines are least-squares fits, and for the non-wetting
fluid, the leftmost point is omitted from the fit. The slopes of the lines, which are the relative
permeability coefficients, are κnn = 0.48± 0.03 for the non-wetting fluid and κww = 0.081± 0.006 for
the wetting fluid.

in figure 6. It is interesting to contrast this figure with figure 5, because while the
unforced fluids respond so similarly to the forcing, the responses of the forced fluids
are very different. This graph does still show the effect of the capillary nonlinearity,
in that the weakest two wetting fluxes (corresponding to the weakest two non-wetting
forcings) are essentially zero; but the non-wetting fluxes are also essentially zero at
these forcings. The best-fit lines to the two sets of data have the same slope within
the uncertainty of the fit, and the uncertainty is not large. The viscous coupling thus
appears to be reciprocal, that is, κnw = 0.015± 0.003 and κwn = 0.014± 0.004 at 50%
concentration in this porous medium.

An additional test of reciprocity, independent of regression, was performed on
the data. The Kolmogorov–Smirnov test (Press et al. 1994) calculates the probability
that two sets of data could be as different as they are if they came from the same
underlying distribution. It is only approximate for two-dimensional distributions like
this one, but the result of the test was that two sets of data shown in figure 6 are
significantly alike.

4.5. Reasons for reciprocity

Why should the viscous coupling be the same (or nearly the same) in these two cases?
On casual consideration, it might seem to be a consequence of the Onsager reciprocity
relation from non-equilibrium thermodynamics (Onsager 1931a, b). In this theory, the
rate of entropy production can be computed as the sum of products of forces Fi with
their conjugate fluxes Ji,

Entropy production =
∑
i

FiJi. (4.3)
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Figure 6. Fluid–fluid coupling at 50% concentration. The data points here are from the same
simulations as for figure 5 and are averaged in the same way, but now it is the unforced species
whose total flux is plotted. Note that the vertical scale is much smaller, so the error bars are larger
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omitted, corresponding to the point omitted from the fit in figure 5. Whereas the slopes of the
forced fluid fluxes were quite different, here the slopes of the unforced fluid fluxes are the same,
within the uncertainty of the fit: κnw = 0.015 ± 0.003 (non-wetting fluid), and κwn = 0.014 ± 0.004
(wetting fluid). The uncertainty of the y-intercept is large enough that both best-fit lines can be can
be said to pass through the origin.

In addition, it postulates a general linear force–flux relation,

Ji =
∑
j

LijFj , (4.4)

where the Lij are the coupling coefficients; this equation is analogous to equation
(1.1), with the coupling coefficients Lij corresponding to kκij . If one has a set of such
conjugate forces and fluxes, and a fluctuation–dissipation theorem holds (i.e. the total
correlation of rates of decay of fluctuations of the system in thermal equilibrium
is the rate of dissipation of comparable macroscopic non-equilibrium perturbations,
Reif 1965) then the theory states that the cross terms, i.e. the coupling coefficients
between forces and their non-conjugate fluxes, will be reciprocal: Lij = Lji.

While our assumed linear force–flux relation and the reciprocity found in our simu-
lations suggest a parallel to the Onsager theory, the fact that bubbles break and merge
during the simulation indicates that the flow is maintained too far from equilibrium
for the theory to apply. This complex, non-equilibrium, interfacial dynamics should
have a significant influence on the macroscopic dissipation (Doi & Ohta 1991). In
equilibrium, on the other hand, the interface topology does not change. Any fluctua-
tion large enough to change the interface topology would be so improbable as to be
negligible. Thus, though our macroscopic responses are approximately linear, there is
no reason to believe that this linearity is related to the average decay of equilibrium
fluctuations.

Thus we are left with a conundrum: we appear to have demonstrated a kind of
Onsager reciprocity, but at the same time it does not appear to have a theoretical
justification. It is interesting, then, to examine some cases that are understood.
First of all, if the two fluids had the same wetting properties, then their coupling
would be reciprocal by symmetry. If two fluids were confined to a straight channel
with a flat interface between them, again symmetry would require reciprocity. It
is not so obvious, but nonetheless true, that the coupling is reciprocal when two
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fluids flow in a pipe with circular cross section, with wetting fluid on the outside,
non-wetting fluid inside, and the interface between them a cylinder concentric with
the pipe (Bacri et al. 1990). Pride & Flekkøy (1996, personal communication) have
demonstrated a kind of differential reciprocity in a more general case: the change
in fluxes due to small changes in forcing, such that the interface moves only a little
bit due to the change in forcing, is reciprocal. None of these arguments can apply
in the case of our simulations where interfaces move, break and merge during the
flow, but they lead us to a speculation: when the interface takes the same shape
regardless which fluid is forced, the coupling will be reciprocal. Perhaps the interfaces
between the two fluids in the porous rock are mostly held in place by the complex
rock geometry, and the flow takes place in essentially one simple channel regardless
how the fluid is forced. The reciprocal coupling would then be a consequence of the
constrained pore geometry. In what follows, we will examine the fluid–fluid interface
and the velocity field in more detail, and find that this simple explanation is not
sufficient. Along the way, we will learn that the flow is indeed organized, that this
organization explains many of our observations, and that the organization of the flow
can be characterized by considering statistical properties of the velocity field.

4.6. Details of the flow

Figure 7 shows the lattice nodes where the concentration (averaged over 20 000 time
steps) is between 40% and 60% in both wetting and non-wetting forced flow. We can
think of this as the average location of interfaces. While the interfaces are largely
identical, most of them are in regions of little or no flow, as we shall see below. There
is an important difference on the left side of the simulation volume. There, in the
non-wetting forced case (figure 7a), the interface is clearly more connected than in
the wetting forced case, figure 7(b). As shown in figure 8, this turns out to be a region
of significant flow, so a different topology at this location is likely to be important.
The vertical velocity fields are shown in figure 8, along with a plot for the velocity of
a pure fluid. Although the pure fluid (figure 8b) and the non-wetting-forced mixture
(figure 8a) are quite similar and similarly organized, the wetting-forced fluid is entirely
different. The pure fluid flows in a single, well-organized channel which is connected
through the medium. The plot does not show all of the channel, because some of the
flow occurs more slowly than the top 1% of the velocity and is not plotted here. The
non-wetting-forced fluid flows in the same channel, with a little bit of flow scattered
around; but the wetting-forced mixture has no channel at all, only velocity scattered
throughout the medium. In fact, the only place where the wetting fluid does not have
any flow is in the channel where the pure fluid moves. Note that the channel through
which the non-wetting-forced fluid moves is at the same location as the connected
interface pointed out in figure 7.

In summary, the interfaces are largely at the same locations regardless which fluid
is forced. However, the interface is connected in a particular region when the non-
wetting fluid is forced, but disconnected at the same location when the wetting fluid is
forced. Further, the flow is rapid at this location when the non-wetting fluid is forced,
but slow when the wetting fluid is forced. These distinctions seem important, and
yet the fluid–fluid coupling is the same in the two cases. One would expect different
couplings since the interface geometries are different, so the observed reciprocity of
the coupling remains unexplained. Perhaps it is an accidental consequence of our
particular pore geometry, though it seems improbable that the first case chosen should
happen to have such a convenient property.
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(a) (b)

Figure 7. The locations of sites where the concentration, averaged over 20 000 time steps, is
between 40% and 60%; such sites are deemed to be nearly stationary interfaces. (a) The location of
interfaces when the non-wetting fluid is forced, and (b), when the wetting fluid is forced. Although
much of the interface is the same in the two cases, note that on the left side of the volume, the
non-wetting-forced case (a) is more connected than in the wetting-forced case (b). This is in a region
where the vertical velocity is large (see figure 8), so the difference is salient.

5. Characterizing the flow
We now show that a simple statistical parameter, the skewness of the velocity

distribution, characterizes the organization of flow evident in figure 8. One of the
consequences of a complex flow is a range of velocities at different locations in the
rock: a histogram of velocity would reveal something of this complexity. We have
computed histograms for six reference cases: unforced pure and mixed fluids as
controls; forced pure fluid and uniformly forced mixture; and mixtures wherein only
the wetting or non-wetting fluid is forced.

5.1. Unforced fluids

Figure 9 show the distributions of velocity components in unforced fluids in the porous
rock. As one would expect, the distributions are centred at and symmetric about zero,
since there is no reason for a bias in any direction. But curiously, the distribution for
the mixture is much wider than that for the pure fluid. This wide distribution does
not grow narrower as more data are added, and a nearly identical distribution can be
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Figure 8. For caption see facing page.
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Figure 9. When there is no forcing, the average velocity is zero, but nonetheless there is a
distribution of velocities in the porous rock: (a) the distribution for pure fluid, and (b) for a 50%
mixture. The velocities were averaged for 20 000 time steps, and here we plot the probability that
a location in the pore space chosen at random will have the velocity component indicated. The
distributions for x-, y- and z-components of velocity are the same in each case.

found for a spherical drop in a spherical cavity. This distribution would seem, then,
to be characteristic of stationary interfaces with arbitrary orientation.

Why should stationary fluid have a distribution of velocities at all? The simple
explanation, and a sufficient one for the pure fluid, is that the lattice gas has
fluctuations and that, even after long averaging, there is still some random variation
from point to point in the medium. Such variation would be observed in real fluids
as well, if they were sampled with fine enough time and space resolution. But the
two-phase histogram is qualitatively different, and demands a different explanation.
Here the cause appears to be spurious currents at the fluid–fluid interface. These
currents are a well-known defect in two-phase lattice methods (see, for example,
Gunstensen 1992), and are a result of the discrete underlying lattice. Figure 10 shows
these currents on a slice through a spherical drop suspended in a spherical cavity.
Experience shows that sensitive tests such as those reported in this paper (drag on
fluid spheres and flow in cylindrical pipes) are not affected by these currents. We see,
however, that they play an important rôle in our statistical analysis.

5.2. Forced fluids

Figures 11 and 12 show histograms for forced pure fluid and forced 50% mixtures,
respectively. In every case the fluid or fluids were forced upward, in the positive
z-direction. Consequently the distributions of horizontal (x and y) components
are always found to be the same, while the vertical (z) component has a different
distribution. The horizontal distributions are always symmetric about zero, while the
vertical component is always skewed towards positive velocities.

Figure 8. The vertical velocity in the porous rock, when the non-wetting fluid (a) or wetting fluid
(c) in a 50% mixture is forced; or when pure fluid (b) is forced. The plots show the locations in
space where the fastest hundredth of the vertical velocities are found. Note that in (a) and (b), the
fastest velocities are located in a coherent channel, the same one in both cases; while in (c), no such
coherent channel appears, and the flow is not fast in the channel which appears in the first two
cases.
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Figure 10. Slice through a sphere of radius 10, showing the spurious currents in the (x, y)-plane.
The magnitude of the largest arrows is 0.1 lattice unit/time step, quite a large speed. The currents
were averaged over 3000 time steps.
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Figure 11. Histograms of the vertical component (solid line) and the horizontal components
(dashed line) when pure fluid is forced. The forcing was 0.0004 momentum units per time step.

5.2.1. Pure fluid

When the pure fluid is forced (figure 11), the distributions are much wider than
in the unforced case, with the horizontal components symmetric about zero and the
z-component strongly skewed towards positive velocities. The horizontal component
histograms are wide because the fluid must flow through channels that are not vertical.
The width of these distributions indicates the range of horizontal velocities, and hence
indicates the extent to which the flow paths are scattered from the vertical. It might
be possible to derive a statistical tortuosity from these data. The z-component
distribution is also wide, but with almost no occurrences of negative (downward)
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Figure 12. Distributions of velocity depend on which fluid is forced. Although the horizontal
components (dotted lines) in each graph still look like the unforced histogram (figure 9b), the
z-components (solid lines) are different to a greater or lesser degree as a result of the forcing. When
the non-wetting fluid is forced (a), the distribution has a tail at high velocities; whereas when the
wetting fluid is forced (b), there is no tail, but the most probable velocity is slightly larger than zero.
When both fluids are forced (c), the histogram has properties of both.

velocity. This distribution reflects the range of channel widths through which the flow
passes, from trapped regions that do not flow at all to a few wide channels with little
resistance to flow. The fact that there is almost no negative velocity indicates that the
fluid is moving coherently through the medium.

5.2.2. Mixtures

Histograms for wetting forced, non-wetting forced, and uniformly forced mixtures
are shown in figure 12. In contrast to the difference between forced and unforced pure
fluid, forcing does not significantly change the distributions of the horizontal compo-
nents in the mixtures. The width of these distributions is apparently determined by
the spurious currents. However, the z-component has a distinctly skewed distribution
in the cases of non-wetting forced (figure 12a) and uniformly forced (figure 12c)
mixtures. This is analogous to the skew observed when the pure fluid was forced.
In contrast, when the wetting fluid is forced, the z-component is not visibly skewed
(figure 12b).

The overall shape of the velocity distribution emphasizes the outlying data at
extremes of velocity. We can complement these observations by examining the peak
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of the distribution, the most common velocity. When the non-wetting fluid is forced
(figure 12a), the most common velocity is zero, but when the wetting fluid is forced
(figure 12b), the most common velocity is slightly larger than zero. Thus, while the
non-wetting fluid is mostly stationary when it is forced (as evidenced by its most
common velocity being zero), it has a few locations with a high velocity, resulting
in an asymmetric distribution; while when the wetting fluid is forced, there is slight
motion almost everywhere, with no large velocities anywhere. When both species are
forced (figure 12c), the most common velocity is slightly larger than zero, and the
distribution is somewhat asymmetrical: it is a combination, as one might expect, of
the cases when wetting or non-wetting fluids are forced.

5.3. Skewness

The spatially and temporally complex velocity fields described above are reminiscent
of those observed in turbulence studies. Statistical descriptions of turbulence have
been found useful (see, for example, Tennekes & Lumley 1972), so we compute the
moments of our observed distributions. In particular, the third moment or skewness
turns out to be salient. The first moment of a distribution is the familiar mean, and
the second moment is the variance; listing all three:

mean = x̄ =

Ω∑
i

xi/Ω,

variance = σ2 =

Ω∑
i

(xi − x̄)2/Ω,

skewness = S =

Ω∑
i

(xi − x̄)3/σ3Ω.


(5.1)

The skewness is a measure of the asymmetry of the distribution about the mean,
scaled by the variance. For concreteness, consider a set of data {xi}, i ∈ {1, Ω} which
consists of n data with value 2α, 2n data with value −α, and and Ω − 3n data with
value zero. The mean of this simple distribution is zero by construction; its variance
and skewness are

σ2 = 6(n/Ω)α2

and

S = (Ω/6n)1/2.

Note that the variance can be changed independently of the skew within this family
of distributions by changing α. Hence, while the variance reports the width of the
distribution, the skewness is independent of the width and reports instead that the
outliers on one side of the mean are further away than the outliers on the other. In
addition, the magnitude of the skewness is related to the number of outliers: the more
outliers, the smaller the skewness will be. Hence a large skewness indicates that there
are a few large values in the distribution. Since the distributions in this case refer
to velocities distributed in space, the skewness indicates the extent to which directed
flow is localized in a few places with large velocities. A flow field with a large skew
is thus well-organized or focused into a few channels with large flow. Table 4 shows
these moments for each of the cases illustrated in figures 9, 11 and 12.

Consistent with the histograms, the skewness of the transverse velocity component
distributions is always small, since the distributions of these components are always
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Skewness

Forcing w̄/10−3 σ2/10−4 horizontal vertical Figure(s)

Unforced pure 0.005 0.003 0.02 0.02 9(a)
Unforced mixed 0.005 0.13 0.05 0.01 9(b)
Forced pure 3.24 0.049 0.05 4.2 8(b), 11
Forced mixed 2.28 0.14 0.08 0.52 12(c)
Non-wetting forced 2.12 0.18 0.09 0.85 8(a), 12(a)
Wetting forced 0.80 0.14 0.02 0.31 8(c), 12(b)

Table 4. The mean vertical velocity (w̄), its variance (σ2) and the skewness of both horizontal and
vertical velocities for the distributions illustrated in figures 9, 11 and 12. The last column indicates
the figure in which the corresponding histogram (and optionally, the locations of large vertical
velocity) is plotted. The skew is dimensionless, the mean is in lattice units per time step and the
variance in (lattice units per time step)2.

symmetric. The z-component skewness is largest for the pure fluid flow, which is by
eye the most asymmetric distribution; the skewness also distinguishes between the
non-wetting forced distribution (more skew) and the uniformly forced distribution
(less skew), although this comparison is hard to make by inspection. Finally, this
calculation detects some asymmetry in the wetting forced case, where there was not
apparently any in the histogram. The calculated skewness is thus a sensitive measure
of the distribution.

The fourth moment, or kurtosis, of the distributions can also be computed. The
kurtosis, like the skewness, is large when there are a few, large outliers, so it could
also be a measure of the organization of the flow. But whereas the skewness picks
out asymmetry in the distribution, the kurtosis treats outliers symmetrically. Since
the spurious currents are symmetric, the kurtosis includes them, which obscures the
signal we want to see. The skewness, on the other hand, more selectively indicates
the presence of directed flow.

We have thus found a simple statistical parameter which correlates with the
apparent organization of the flow. But why should some cases be more organized than
others? The explanation lies in the spatial distribution of the wetting and non-wetting
fluids. The non-wetting fluids avoid the pore surfaces, forming smooth bubbles in the
larger pores of the medium, while the wetting fluid clings to the walls. This spatial
partitioning leads to a dynamic partitioning between the two fluids. When the wetting
fluid is forced, its constricted and distributed geometry leads to a slow, distributed
flow with little long-range coherence. Because the wetting fluid has no large channels
through which it can pass (the large channels being filled with non-wetting fluid), it
has few locations where it can have a large velocity and many where it must have
a small velocity; thus the skew of this velocity distribution is small and the most
common velocity is non-zero. On the other hand, the non-wetting fluid selectively
occupies the larger pores, and when the forcing is strong enough to drive this fluid
through the medium, almost all of its flow will take place in a few large channels
where the velocity will be high. Meanwhile, much of the non-wetting fluid is trapped
by the constricted medium and unable to move: hence the non-wetting fluid flow
will have a larger skewness, reflecting the wider range and stronger localization of
the non-wetting flow, while the most common velocity is zero. When both species
are forced uniformly, then the wide channels will be filled with rapidly flowing non-
wetting fluid while the narrower channels will contain slowly flowing wetting fluid,
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so the overall flux will be larger while the flow will be less localized than in the
non-wetting forced case. For this reason, the skewness of the uniformly forced case
is smaller than that of the non-wetting forced case and the most common velocity is
non-zero.

6. Conclusions
We have presented a series of results on the flow of two-phase mixtures in porous

sandstone, based on lattice-gas simulations of flow in authentic pore-space geometry
obtained by X-ray microtomography. We have made the first calculation of fluid–fluid
coupling in simulated flow in a real geometry and we have presented the first test of
the reciprocity of fluid–fluid coupling in two-fluid flow in porous rock: every previous
determination, by experiment or by simulation, has been in an artificial medium.

In addition, we have demonstrated that the new lattice-gas model correctly simulates
the subtle phenomenon of drag past a fluid sphere, despite the spurious currents at
the interface; and that despite the finite spatial resolution, we could qualitatively
reproduce results from experiments on two-phase flow through sandstone. These tests
and others reported elsewhere (Olson & Rothman 1995; Appert et al. 1995) give us
confidence that the combination of our model and tomographic reconstruction of
rock geometry is indeed an appropriate tool with which to study the complex flow
that takes place in porous rock.

Finally, we considered ways to characterize the complexity of the flow, and found
that the third moment or skewness of the spatial velocity distribution was a convenient
parameter. The systems which had apparently well-organized flow – the pure fluid
and the mixture with non-wetting forcing – had a large skewness, while less organized
flows had smaller skewness. The skewness is particularly appropriate because it seems
to be relatively unaffected by the spurious currents which arise at interfaces in the
lattice-gas model. It is also a parameter which might be conveniently measured in
laboratory experiments.

We believe that the rock geometry used for this research is sufficiently generic
that the properties we have observed should be qualitatively reproduced for other
geometries and larger scales. However, this must be demonstrated by further cal-
culations. In particular, we will need more examples before we can understand the
observed symmetry of the coupling coefficients. One of the long-standing problems
in the industrial modelling of porous flow is the question of how to use small-scale
laboratory (or simulation) results to predict the outcome of much larger field or
factory processes. While direct calculation and experiments may yield useful scaling
relations for uniform media, real rocks are usually fractured and much of the fluid
flow is dominated by the flow in fractures. A closer analysis of the statistics of flow in
the porous rock should offer means to predict how the flow in rock will couple to flow
in the space between rocks, which might then offer better ways to scale laboratory
measurements up to the field.
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K. K. Unger), pp. 211–223. Elsevier.

Sangani, A. S. 1987 Sedimentation in ordered emulsions of drops at low Reynolds numbers. Z.
Angew. Math. Phys. 38, 542–556.

Sheidegger, A. E. 1974 The Physics of Flow Through Porous Media. University of Toronto Press.

Skordos, P. A. 1993 Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev.
E 48, 4823–4842.

Soll, W., Chen, S., Eggert, K., Grunau, D. & Janecky, D. 1994 Application of the lattice-
Boltzmann technique to multi-fluid flow in popous media. In Computational Methods in Water
Resources X (ed. A. Peters), pp. 991–999. Kluwer.

Spanne, P., Thovert, J. F., Jacquin, W. B., Lindquist, W. B., Jones, K. W. & Adler, P. M. 1994
Synchroton computed microtomography of porous media: topography and transports. Phys.
Rev. Lett. 73, 2001–2004.

Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.

Yao, Y., Frykman, P., Kalaydjian, F., Thovert, J. F. & Adler, P. M. 1993 High-order moments of
the phase function for real and reconstructed model porous media: a comparison. J. Colloid
Interface Sci. 156, 478–490.

Zarcone, C. 1994 Étude du couplage visqueux en milieu poreux: mesure des perméabilités croisées.
PhD thesis, L’Institut National Polytechnique de Toulouse.

Zarcone, C. & Lenormand, R. 1994 Détermination expérimentale du couplage visqueux dans les
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